Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(E)-2-Methyl-3-(2-methyl-2-nitro-vinyl)-1H-indole and (E)-3-(2-methyl-2-nitrovinyl)-2-phenyl-1H-indole

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a }}$
${ }^{\text {a D Department of Pharmaceutical Sciences, College of Pharmacy, University of }}$ Kentucky, Lexington KY 40536, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
Correspondence e-mail: pcrooks@uky.edu

Received 13 June 2005
Accepted 11 July 2005
Online 30 July 2005

In the title compounds, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, (I), and $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$, (II), respectively, the indole rings are planar and the vinyl groups lie out of the indole planes, making dihedral angles of 33.48 (5) and $41.31(8)^{\circ}$, respectively. In (II), the dihedral angle between the phenyl and indole ring planes is $32.06(6)^{\circ}$. In both molecules, the double bond connecting the methylnitrovinyl group and the indole nucleus adopts an E configuration. Notwithstanding the differences in space group [C2/c for (I) and $P 2_{1} 2_{1} 2_{1}$ for (II)], the mode of packing of compounds (I) and (II) is determined by similar intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, forming chains that run parallel to [101] in (I) and [001] in (II).

Comment

3-(2-Nitrovinyl)indoles are very important synthons for the preparation of tryptamines (Shen et al., 1998) in high yield. They also undergo Michael addition reactions, resulting in the formation of a wide range of indole derivatives (Chakrabarty et al., 2001). Apart from their synthetic utility, 3-(2-nitrovinyl)indoles also exhibit amebicidal (Sharma et al., 1987) and antifungal (Canoira et al., 1989) activity. We have synthesized a series of 3-(2-nitrovinyl)indoles and evaluated them for antitubercular activity (Sonar \& Crooks, unpublished work).

The title compounds, (I) and (II), were prepared by condensation of 2-methylindole-3-carbaldehyde and 2-phenyl-indole-3-carbaldehyde with nitroethane in the presence of ammonium acetate, to afford (E)-2-methyl-3-(2-methyl-2-nitrovinyl)-1H-indole, (I), and (E)-3-(2-methyl-2-nitrovinyl)-2-phenyl- $1 H$-indole, (II), each as a single geometrical isomer. The structures of products (I) and (II) were initially identified by NMR spectroscopy. Generally, condensation reactions of indole-3-carbaldehydes with nitromethane or nitroethane afford the corresponding E isomer. However, when a nitrovinyl group containing an ester functionality in the 2-position
is utilized in these types of reactions, the reaction affords a mixture of Z and E isomers (Bakhmutov et al., 1977). In order to confirm the double-bond geometry of the title compounds, and to obtain more detailed information on the conformations of these molecules in the solid state, their X-ray structure determination has been carried out and the results are presented here.

(I)

(Ia)

(II)

(IIa)

Figs. 1 and 2 illustrate the molecular structures and atomnumbering schemes for (I) and (II), respectively. For ease of comparison, the two compounds are discussed in parallel below. Selected geometric parameters are presented in Tables 1 and 3 for (I) and (II), respectively. For each structure, the indole ring is planar, with bond distances and angles comparable with those reported for other indole derivatives (Mason et al., 2003). Compounds (I) and (II) are E isomers, and the $\mathrm{N} 2-\mathrm{C} 10$ bond is in a trans disposition with respect to the C2-C9 bond. In both compounds, deviations from the ideal bond angle of 120° are observed in the bond angles $\mathrm{C} 2=\mathrm{C} 1-\mathrm{C} 12, \mathrm{C} 2-\mathrm{C} 9=\mathrm{C} 10, \mathrm{C} 9=\mathrm{C} 10-\mathrm{C} 11, \mathrm{C} 9=\mathrm{C} 10-\mathrm{N} 2$ and $\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$. While the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 12$ and $\mathrm{C} 1=\mathrm{C} 2-$ C9 bond angles are close to the ideal value, the $\mathrm{C} 2-$

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
$\mathrm{C} 9=\mathrm{C} 10-\mathrm{N} 2$ torsion angle indicates that the nitrovinyl group is nearly planar [177.96(11) ${ }^{\circ}$ in (I) and $178.86(18)^{\circ}$ in (II)], and the plane of the nitrovinyl group is twisted, by 33.48 (5) ${ }^{\circ}$ for (I) and 41.31 (8) ${ }^{\circ}$ for (II), with respect to the indole ring plane. However, comparing the $\mathrm{C} 2-\mathrm{C} 9$ bond length [1.4335 (17) \AA in (I) and 1.451 (3) \AA in (II)] with the standard value for a single bond connecting a C_{ar} atom to a Csp ${ }^{2}$ atom [1.470 (15) \AA; Wilson, 1992] suggests that the indole system has an extended conjugation through the ethylene double bond and the nitro group. There is further evidence for this in the shortening of the $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-$ C 10 and lengthening of the $\mathrm{C} 1=\mathrm{C} 2$ and $\mathrm{C} 9=\mathrm{C} 10$ bonds compared with reported values similar to the $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 10$ bonds for other compounds (Mason et al., 2003; Strauss et al., 2003). In the case of (II), the phenyl group at the

Figure 2
A view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3
The crystal structure of (I), viewed along the b axis.

Figure 4
The crystal structure of (II), viewed along the a axis.

2-position makes a dihedral angle of 32.06 (6) ${ }^{\circ}$ with the plane of the indole ring. This extended conjugation suggests that compounds (I) and (II) exist predominantly in resonance forms ($\mathrm{I} a$) and ($\mathrm{II} a$), respectively, which explains the highly coloured and crystalline nature of the title compounds, due to the extended chromophore, and the increased polarity within these molecules. Furthermore, the absence of IR absorption bands at 1550 and $1372 \mathrm{~cm}^{-1}$, which is typical of the nitro group in 3-(2-nitrovinyl)indoles (Bucki \& Mark, 1977), the appearance of two new bands between 1300 and $1250 \mathrm{~cm}^{-1}$, and the intense UV absorption near 400 nm , confirm the existence of resonance forms ($\mathrm{I} a$) and ($\mathrm{II} a$).

The packing of compounds (I) and (II), as viewed along the b and a axes, is illustrated in Figs. 3 and 4, respectively. In each, atom H 1 participates in a weak intermolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ interaction [symmetry code $\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ for (I) and $\left(\frac{1}{2}-x,-y, \frac{1}{2}+z\right)$ for (II)], linking the title compounds into chains that run parallel to [101] and [001], respectively.

Experimental

For the preparation of (I), solid ammonium acetate ($0.3 \mathrm{~g}, 3.8 \mathrm{mmol}$) was added to a suspension of 2-methylindole-3-carbaldehyde (1.08 g , 6.8 mmol) in nitroethane (3 ml). The mixture was stirred vigorously under reflux at $393-403 \mathrm{~K}$ for 2 h . The mixture was then cooled, and the solid which appeared was collected by filtration. Recrystallization from methanol afforded orange-brown crystals of (I) suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.26(s, 3 \mathrm{H}), 2.42(s, 3 \mathrm{H}), 7.11(p d$, $2 \mathrm{H}), 7.37(d d, 1 \mathrm{H}), 7.47(d d, 1 \mathrm{H}), 8.28(s, 1 \mathrm{H}), 11.92(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.6,15.8,105.3,111.5,119.4,120.3,121.7,125.6,129.1$, 135.9, 141.5, 145.6. For the preparation of (II), solid ammonium acetate $(0.3 \mathrm{~g}, 3.8 \mathrm{mmol})$ was added to a suspension of 2-phenyl-indole-3-carbaldehyde ($1.5 \mathrm{~g}, 6.8 \mathrm{mmol}$) in nitroethane (3 ml). The mixture was stirred vigorously under reflux at $393-403 \mathrm{~K}$ for 2 h . The mixture was then cooled and the solid which appeared was collected by filtration. Recrystallization from methanol afforded orangebrown crystals of (II) suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $2.22(s, 3 \mathrm{H}), 7.20(m, 2 \mathrm{H}), 7.58(m, 7 \mathrm{H}), 8.17(s, 1 \mathrm{H}), 12.28(s, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.7,105.0,112.1,120.0,120.7,122.7,125.9$, 128.7, 128.9, 129.2, 131.0, 136.5, 141.2, 144.0.

Compound (I)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=216.24$
Monoclinic, $C 2 / c$
$a=12.1176(3) \AA$
$b=11.3888(3) \AA$
$c=15.2667(4) \AA$
$\beta=98.8372(10)^{\circ}$
$V=2081.87(9) \AA^{3}$
$Z=8$
Data collection
Nonius KappaCCD area-detector diffractometer
ω scans at fixed $\chi=55^{\circ}$
4507 measured reflections
2390 independent reflections
1927 reflections with $I>2 \sigma(I)$
$D_{x}=1.380 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2484 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=90.0$ (2) K
Block, orange-brown
$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-15 \rightarrow 15$
$k=-13 \rightarrow 14$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.114$
$S=1.10$
2390 reflections
147 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

N1-C1			
N1-C8	$1.3534(16)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.3532(17)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3803(16)$	$\mathrm{C} 10-\mathrm{N} 2$	$1.4484(15)$
$\mathrm{C} 1-\mathrm{C} 12$	$1.4015(17)$	$\mathrm{N} 2-\mathrm{O} 1$	$1.2400(14)$
$\mathrm{C} 2-\mathrm{C} 9$	$1.4833(18)$	$\mathrm{N} 2-\mathrm{O} 2$	$1.2416(14)$
	$1.4335(17)$		
C1-N1-C8			
N1-C1-C12	$110.29(10)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$	$116.25(12)$
C2-C1-C12	$120.70(11)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$129.54(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$130.12(12)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$113.95(11)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 2$	$121.00(11)$	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{O} 2$	$121.27(11)$
	$129.02(12)$	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 10$	$117.80(11)$
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$			
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10$	$-0.4(2)$	$\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$	$177.96(11)$
	$154.03(13)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2-\mathrm{O} 2$	$3.40(16)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	0.88	2.22	$3.0112(14)$	150

Symmetry code: (i) $x+\frac{1}{2}, \frac{1}{2}-y, z+\frac{1}{2}$.

Compound (II)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=278.30$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.7856(2) \AA \AA^{2}$
$b=10.4801(3) \AA$
$c=16.7489(5) \AA$
$V=1366.61(7) \AA^{3}$
$Z=4$
$D_{x}=1.353 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 1825 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=90.0$ (2) K
Block, orange-brown
$0.25 \times 0.22 \times 0.22 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
ω scans at fixed $\chi=55^{\circ}$
3128 measured reflections
3128 independent reflections
2257 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.106$
$S=1.04$
3128 reflections
192 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0544 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$

$$
R_{\text {int }}=0.058
$$

$$
\theta_{\text {max }}=27.5^{\circ}
$$

$$
\begin{aligned}
& \sigma_{\text {max }} \\
& = \\
& =-10 \rightarrow 10
\end{aligned}
$$

$$
k=-13 \rightarrow 13
$$

$$
l=-21 \rightarrow 21
$$

$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.018 (3)
Absolute structure: Flack (1983),
with 1319 Friedel pairs
Flack parameter: 0.4 (16)

Table 3
Selected geometric parameters ($\left(\AA{ }^{\circ}\right.$) for (II).

$\mathrm{N} 1-\mathrm{C} 1$	$1.371(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.340(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.376(2)$	$\mathrm{C} 10-\mathrm{N} 2$	$1.454(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.386(3)$	$\mathrm{N} 2-\mathrm{O} 1$	$1.232(2)$
$\mathrm{C} 1-\mathrm{C} 12$	$1.466(3)$	$\mathrm{N} 2-\mathrm{O} 2$	$1.242(2)$
$\mathrm{C} 2-\mathrm{C} 9$	$1.451(3)$		
			$115.80(18)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$109.50(17)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$	$129.37(18)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 12$	$121.03(17)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$114.72(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12$	$129.75(17)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$122.01(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$121.72(18)$	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{O} 2$	$117.76(17)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 2$	$128.36(19)$	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 10$	
			$178.86(18)$
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$-6.7(3)$	$\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$	$-2.9(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10$	$144.4(2)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2-\mathrm{O} 2$	

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	0.88	2.11	$2.953(2)$	161
Symmetry code: (i) $\frac{1}{2}-x,-y, z+\frac{1}{2}$.				

Symmetry code: (i) $\frac{1}{2}-x,-y, z+\frac{1}{2}$.

The refinement of structure (I) required no particular special treatment. However, for structure (II), which is an all-light-atom achiral molecule that happened to crystallize in space group $P 2_{1} 2_{1} 2_{1}$, the Friedel opposites were not merged and the structure was refined as an inversion twin. Not surprisingly, the Flack (1983) parameter [0.4 (16)] was wholly inconclusive, and for this reason the twin fractions were fixed at $50: 50$ for the final stages of refinement. An alternative treatment involving refinement against a data set where the Friedel pairs had been merged led to some small differences; the largest Fourier difference map features were marginally smaller (0.18 and $-0.20 \mathrm{e}^{-3}$ versus 0.19 and $-0.21 \mathrm{e} \AA^{-3}$ for the unmerged data), the value of R_{1} was smaller (0.041 versus 0.044), and the s.u. values were larger by a factor of around 1.3 , which is approximately the square root of the ratio of the numbers of data present in each set. The H atoms in structures (I) and (II) were found in difference Fourier maps and subsequently refined either using riding models, in which the H -atom coordinates were determined geometrically from their attached parent atom, or by placing them at positions of

organic compounds

maximal threefold average electron density calculated within the toroid of possible H -atom positions for those H atoms on methyl groups attached to $s p^{2}$ carbons. Bond distances for H atoms were fixed as follows: aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$. Isotropic displacement parameters for the H atoms were defined as $1.2 U_{\text {eq }}$ for aromatic CH and NH , and $1.5 U_{\mathrm{eq}}$ for methyl CH_{3}.

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/ PC (Sheldrick, 1995); publication software: SHELXL97 and local procedures.

This investigation was supported by the National Institute of Alcohol Abuse and Alcoholism (grant No. AA12600).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1609). Services for accessing these data are described at the back of the journal.

References

Bakhmutov, V. I., Kochetkov, K. A., Burmistrov, V. A., Babievskii, K. K. \& Belikov, V. M. (1977). Chem. Abstr. 87, 151619.
Bucki, G. \& Mark, C. P. (1977). J. Org. Chem. 42, 1784-1786.
Canoira, L., Gonzalo Rodriguez, J., Subirats, J. B., Escario, J.-A., Jimenez, I. \& Martinez-Fernandez, A. R. (1989). Eur. J. Med. Chem. 24, 39-42.
Chakrabarty, M., Basak, R. \& Ghosh, N. (2001). Tetrahedron Lett. 42, 39133915.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. \& Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531-540.

Nonius (1999). COLLECT. Nonius, BV, Delft, The Netherlands
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sharma, G. L., Mukhopadhyay, S., Kaur, R. \& Banerjee, S. K. (1987). Indian J. Med. Res. 86, 783-786.
Sheldrick, G. M. (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, G., Chen, G., Cheng, Y., Xie, L. \& Miao, L. (1998). Chem. Abstr. 130, 13895.

Strauss, L. H., Abzianidze, V. V., Berestovitskaya, V. M. \& Efremova, I. E. (2003). Acta Cryst. C59, o177-o178.

Wilson, A. J. C. (1992). International Tables for Crystallography, Vol. C, Table 9.5.1.1. Dordrecht: Kluwer Academic Publishers.

